skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Werth, Charles_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract There is not a clear understanding of the extent by which naturally occurring reactions can attenuate trichloroethene (TCE) and its daughter products within low permeability zones (LPZs), and addressing this knowledge gap requires advancement of methods to accurately measure in situ volatile chemical concentrations. In this study, a soil coring method that freezes the soil in‐situ (a.k.a., cryogenic coring) was utilized to measure depth‐discrete distributions of TCE and its volatile reaction products through a TCE‐impacted silty clay aquitard, and results were compared with those from adjacent soil cores taken using a conventional coring approach. Vertical concentration profiles of TCE,cis‐1,2‐dichloroethylene (DCE), vinyl chloride (VC), ethane, and methane were all compared between the two coring methods, and results indicate the two coring methods recovered statistically equivalent concentrations of volatiles across most depths of the fine‐grained cohesive clayey soil at the study site. Biotic reductive dechlorination was the dominant TCE reaction pathway at the site; several reduced gasses that are possible markers for abiotic reduction were detected, but their concentrations and intervals of occurrence were not sufficiently consistent to indicate whether they were from abiotic TCE reduction or unrelated biological processes. Overall, cryogenic coring yielded improved recovery of sand lenses compared to conventional coring, but offered no apparent benefits for improved recovery of TCE and its volatile reaction products in the low permeability aquitard material at the site. 
    more » « less
  2. Abstract Herein, aqueous nitrate (NO3) reduction is used to explore composition‐selectivity relationships of randomly alloyed ruthenium‐palladium nanoparticle catalysts to provide insights into the factors affecting selectivity during this and other industrially relevant catalytic reactions. NO3reduction proceeds through nitrite (NO2) and then nitric oxide (NO), before diverging to form either dinitrogen (N2) or ammonium (NH4+) as final products, with N2preferred in potable water treatment but NH4+preferred for nitrogen recovery. It is shown that the NO3and NO starting feedstocks favor NH4+formation using Ru‐rich catalysts, while Pd‐rich catalysts favor N2formation. Conversely, a NO2starting feedstock favors NH4+at ≈50 atomic‐% Ru and selectivity decreases with higher Ru content. Mechanistic differences have been probed using density functional theory (DFT). Results show that, for NO3and NO feedstocks, the thermodynamics of the competing pathways for N–H and N–N formation lead to preferential NH4+ or N2production, respectively, while Ru‐rich surfaces are susceptible to poisoning by NO2feedstock, which displaces H atoms. This leads to a decrease in overall reduction activity and an increase in selectivity toward N2production. Together, these results demonstrate the importance of tailoring both the reaction pathway thermodynamics and initial reactant binding energies to control overall reaction selectivity. 
    more » « less